REVISED STRUCTURAL CALCULATIONS FOR:
PLAN MN472
7119 80TH AVE SE
MERCER ISLAND, WA 98040

ARCHITECT: MN CUSTOM HOMES

DECEMBER 1, 2023

DESIGN CRITERIA

ROOF		FLOOR	
Composition	2.5 psf	$3 / 4 "$ Plywood	2.4 psf
$3 / 4 "$ Plywood	2.4 psf	TJI @ 16" o.c.	2.3 psf
Truss @ 24" o.c.	3 psf	Flooring	1.0 psf
Insulation	1.0 psf	Gyp Board (5/8")	2.8 psf
Gyp Board (5/8")	2.8 psf	MEP	1.5 psf
MEP	1.5 psf		
Solar Panels	5.0 psf		

Total 18.2 psf
Use 20.0 psf

Total 10.0 psf
Use 15.0 psf

LIVE LOADS/OCCUPANCY

Risk Category	II	ROOF LIVE		FLOOR LIVE		DECK LIVE	
Roof Deck	No	Snow =	25 psf	Occupancy =	40 psf	Occupancy =	60 psf
Common Access	No			Stair/Corridor $=$	40 psf		

Imp. Factor $=$	1.00	Seismic Ht, hn=	32 ft
Site Class	$=\mathrm{D}($ Default $)$	T, Building	$=0.3$
R Value	$=6.5$	$\mathrm{Ts}=$	0.5

Geo. Ground Hazard?
No w/ASCE 11.4.8 Excep's
$\mathrm{S}_{\mathrm{s}}=1.6 \quad \mathrm{~F}_{\mathrm{a}}=1.200 \quad$ Table 11.4-1
$\mathrm{S}_{1}=0.5 \quad \mathrm{~F}_{\mathrm{v}}=$ NULL Table 11.4-2
$S_{\mathrm{ms}}=1.920 \times 2 / 3=\mathbf{S}_{\mathrm{ds}}=\mathbf{1 . 2 8 0}$ Eqn. 11.4-3
$S_{m 1}=$ NULL $\quad x 2 / 3=\mathbf{S}_{\mathbf{d} 1}=\quad$ NULL Eqn. 11.4-4

$C_{\text {SULT }}=$	0.197
$C_{\text {SALL }}=$	0.138

T/Ts= $0.567 \leq \quad 1.5$
Okay, Cs Eqn. 12.8-2

SEISMIC WEIGHT ASCE 7-16 12.7.2
Partitions $=15 \mathrm{psf}$
*Roof weight $=1 / 2$ Partition + Roof DL
*Floor weight $=$ Full Partition + Floor DL
ROOF 26.0 psf
FLOOR 25.0 psf
022.5 psf
$\mathrm{V}=97 \mathrm{mph} \quad \mathrm{K}_{\mathrm{d}}=0.85$
Exposure $=\mathrm{B} \quad \mathrm{G}=0.85$
$\mathrm{h}=32 \mathrm{ft} \quad \mathrm{K}_{\mathrm{zt}}=1.44 *$ See Kzt
Worksheet
Roof Slope $=6: 12=27^{\circ}$

PRESSURE COEFFICIENTS (Cp)

Windward Wall $=0.8 \quad$ Windward Roof $=0.3$ Leeward Wall $=\quad-0.5 \quad$ Leeward Roof $=-0.6$

PRESSURE (PSF) $\mathrm{q}=0.00256 \mathrm{~K}_{\mathrm{z}} \mathrm{K}_{\mathrm{zt}} \mathrm{K}_{\mathrm{d}} \mathrm{V}^{2}$								
Ht	K_{z}	q_{z}	$0.6 \mathrm{xq}^{1}{ }^{1}$	q_{h}	$\mathrm{P}_{\text {ww }}$	P_{LW}	$\mathrm{P}_{\text {Wall }}$	$\mathrm{P}_{\text {ROOF }}$
0-15	0.57	16.8	10.1		6.9	5.5	12.3	
15-20	0.62	18.3	11.0		7.5	5.5	12.9	
20-25	0.66	19.5	11.7		7.9	5.5	13.4	
25-30	0.70	20.6	12.4		8.4	5.5	13.9	
30-35	0.73	21.5	12.9	12.9	8.8	5.5	14.3	9.9
35-40	0.76	22.4	13.4		9.1	5.5	14.6	
40-45	0.79	23.3	14.0		9.5	5.5	15.0	
45-50	0.81	23.9	14.3		9.7	5.5	15.2	

MALSAM

Plan MN472	
Proiect	
	7119 80th Ave SE
	Mercer Island, WA 98040

7/10/2023	
Date	
0444-2023-23-01	
Proi. No.	
Design	JMT
Sheet	DC1

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback
(9) The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why,

ATC
Hazards by Location

Search Information

Address:	7119 80th Ave SE, Mercer Island, WA 98040, USA
Coordinates:	$47.5387084,-122.2327365$
Elevation:	297 ft
Timestamp:	$2023-07-10 T 18: 43: 33.856 \mathrm{Z}$
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	C

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S_{S}	1.469	MCE $_{\mathrm{R}}$ ground motion (period=0.2s)
S_{1}	0.508	MCE $_{\mathrm{R}}$ ground motion (period=1.0s)
S_{MS}	1.763	Site-modified spectral acceleration value
$\mathrm{S}_{\mathrm{M} 1}$	0.758	Site-modified spectral acceleration value
S_{DS}	1.175	Numeric seismic design value at 0.2 s SA
$\mathrm{S}_{\mathrm{D} 1}$	0.505	Numeric seismic design value at 1.0 s SA

-Additional Information

Name	Value	Description
SDC	D	Seismic design category
F_{a}	1.2	Site amplification factor at 0.2 s
F_{v}	1.492	Site amplification factor at 1.0 s
CR_{S}	0.902	Coefficient of risk (0.2s)
CR_{1}	0.898	Coefficient of risk (1.0s)
PGA	0.629	MCE_{G} peak ground acceleration
$\mathrm{F}_{\mathrm{PGA}}$	1.2	Site amplification factor at PGA
PGA ${ }_{M}$	0.754	Site modified peak ground acceleration
T_{L}	6	Long-period transition period (s)
SsRT	1.469	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.629	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years)
SsD	4.282	Factored deterministic acceleration value (0.2s)
S1RT	0.508	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.566	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years)

S1D	1.638	Factored deterministic acceleration value (1.0s)
PGAd	1.42	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Topographic Factor, K_{zt} Figure 26.8-1			
ASCE 7-10 26.8.1 $\begin{aligned} \text { Exposure } & =C \\ \text { Bldg Height } & =31.5 \mathrm{ft} \\ \text { Site Elev } & =307 \mathrm{ft} \end{aligned}$			AXISYMMETRICAL HILL
PROFILE 1	PROFILE 2	PROFILE 3	PROFILE 4
Shape $=$ $3-\mathrm{D} \mathrm{Hill}$ $\mathbf{H}=$ 319 ft $\mathbf{H} / \mathbf{2}=$ 160 ft $\mathbf{L}_{\mathbf{h}}=$ 2640 ft $\mathbf{x}=$ 1320 ft $\mathbf{z}=$ 32 ft Unobstructed 1 Yes Above Terrain 2 Yes Upper Half 3 Yes Site to Crest 2 Upwind H/Lh 0.121 Calc Kzt 2 NO	Shape $=$ $3-\mathrm{D} \mathrm{Hill}$ $\mathbf{H}=$ 298 ft $\mathbf{H} / \mathbf{2}=$ 149 ft $\mathbf{L}_{\mathrm{h}}=$ 1320 ft $\mathbf{x}=$ 158 ft $\mathbf{z}=$ 32 ft Unobstructed 1 Yes Above Terrain 2 Yes Upper Half 3 Yes Site to Crest $^{\text {U }}$ Upwind H/Lh 0.225758 Calc Kzt ? $^{\text {? }}$ YES	Shape $=$ $3-\mathrm{D} \mathrm{Hill}$ $\mathbf{H}=$ 289 ft $\mathbf{H} / \mathbf{2}=$ 145 ft $\mathbf{L}_{\mathbf{h}}=$ 2323 ft $\mathbf{x}=$ 0 ft $\mathbf{z}=$ 32 ft Unobstructed 1 Yes Above Terrain 2 Yes Upper Half 3 Yes Site to Crest 2 Upwind H/Lh 0.124397 Calc Kzt ? 2 NO	Shape $=$ $3-\mathrm{D} \mathrm{Hill}$ $\mathbf{H}=$ 308 ft $\mathbf{H} / \mathbf{2}=$ 154 ft $\mathbf{L}_{\mathrm{h}}=$ 686 ft $\mathbf{x}=$ 2429 ft $\mathbf{z}=$ 32 ft Unobstructed 1 Yes Above Terrain 2 Yes Upper Half 3 Yes Site to Crest 2 Downwind H/Lh 4 0.4487179 Calc Kzt ? $^{\text {? }}$ YES
$\left(\mathrm{K}_{1} / \mathrm{H} / \mathrm{L}_{\mathrm{h}}\right)$ $\mathrm{K}_{1}:$ 1.05	$\begin{aligned} & \mathrm{K}_{1}: \quad\left(\mathrm{K}_{1} / \mathrm{H} / \mathrm{L}_{\mathrm{h}}\right) \\ & \text { Coefficient }=\quad 1.05 \end{aligned}$	$\begin{array}{ll} \mathrm{K}_{1}: & \left(\mathrm{K}_{1} / \mathrm{H} / \mathrm{L}_{\mathrm{n}}\right) \\ \text { Coefficient }= & 1.05 \end{array}$	$\begin{array}{ll} \\ \mathrm{K}_{1}: & \left(\mathrm{K}_{1} / \mathrm{H} / \mathrm{L}_{\mathrm{h}}\right) \\ \text { Coefficient }= & 1.05 \end{array}$
$\mathrm{K}_{1}=\mathrm{N} / \mathrm{A}$	$\mathrm{K}_{1}=0.23705$	$\mathrm{K}_{1}=\mathrm{N} / \mathrm{A}$	$\mathrm{K}_{1}=0.47115$
$\begin{array}{\|lc\|} \hline \mathrm{K}_{2}: & \left(1-\|\mathrm{x}\| / \mu \mathrm{L}_{\mathrm{h}}\right) \\ \mu= & 1.5 \quad \text { (Figure 26.8-1) } \\ \hline \end{array}$	$\begin{array}{lc} \mathrm{K}_{2}: & \left(1-\|\mathrm{x}\| / \mu \mathrm{L}_{\mathrm{h}}\right) \\ \mu= & 1.5 \quad \text { (Figure 26.8-1) } \\ \hline \end{array}$	$\begin{array}{lc} \hline \mathrm{K}_{2}: & \left(1-\|x\| / \mu L_{\mathrm{h}}\right) \\ \mu= & 1.5 \quad \text { (Figure 26.8-1) } \\ \hline \end{array}$	$\begin{array}{lc} \hline \mathrm{K}_{2}: & \left(1-\|x\| / \mu \mathrm{L}_{\mathrm{n}}\right) \\ \mu= & 1.5 \\ \hline & \text { (Figure 26.8-1) } \\ \hline \end{array}$
$K_{2}=$ N/A	$\mathrm{K}_{2}=0.92$	$\mathrm{K}_{2}=\mathrm{N} / \mathrm{A}$	$\mathrm{K}_{2}=-1.35897$
$\mathrm{K}_{3}:$ $\mathrm{e}^{-\gamma / 2 L n}$ $\gamma=$ 4 (Figure 26.8-1)	$\mathrm{K}_{3}:$ $\mathrm{e}^{-\gamma / \mathrm{z} L[}$ $\gamma=$ 4 (Figure 26.8-1)	$\begin{array}{lll} \hline \mathrm{K}_{3}: & \mathrm{e}^{-\gamma / L L n} \\ \gamma= & 4 & \text { (Figure 26.8-1) } \\ \hline \end{array}$	$\begin{array}{lll} \mathrm{K}_{3}: & & \mathrm{e}^{-\gamma / 2 L n} \\ \gamma= & 4 & \text { (Figure 26.8-1) } \\ \hline \end{array}$
$\mathrm{K}_{3}=\mathrm{N} / \mathrm{A}$	$\mathrm{K}_{3}=0.90896$	$\mathrm{K}_{3}=\mathrm{N} / \mathrm{A}$	$\mathrm{K}_{3}=0.8323$
$\mathrm{K}_{\mathrm{zt}}=\overline{\left(1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)^{2}}$	$\mathrm{K}_{\mathrm{zt}}=\left(1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)^{2}$	$\mathrm{K}_{\mathrm{zt}}=\left(1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)^{2}$	$\mathrm{K}_{\mathrm{zt}}=\left(1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)^{2}$
$\mathrm{K}_{\mathrm{zt}}=1.00$	$\mathrm{K}_{\mathrm{zt}}=1.44$	$\mathrm{K}_{\mathrm{zt}}=1.00$	$\mathrm{K}_{\mathrm{zt}}=1.00$
1 Hill, ridge, or escarpment is isolated and unobstructed upwind by other similar topographic features of comparable height for 100H or 2 miles (whichever is less) ASCE 7-10 26.8.1 2 The hill, ridge, or escarpment protrudes above the height of the upwind terrain features within a 2-mi radlus in any quadrant by a factor of two or more. ASCE 7-10 26.8.1 3 The structure is located as shown in Fig. 26.8-1 in the upper one-half of a hill or ridge or near the crest of an escarpment. ASCE 7-10 26.8.1 4 For $H / L_{h}>0.5$, assume $H / L_{h}=0.5$ for K_{1} and $L_{h}=2 H$ for K_{2} and K_{3}			
			Kzt $=1.44$

MALSAM
TSANG
STRUCTURAL
ENGINEERING

Plan MN472	
Proiect	
	7119 80th Ave SE
	Mercer Island, WA 98040

$7 / 10 / 2023$	
Date	
Proi. No.	0444-2023-23-01
Design	JMT
Sheet	DC3

TYPICAL BEAM CASES

*ASSUME CASE 1 FOR ALL BEAMS U.N.O.

CASE \#1: (C1)

CASE \#2: (C2)

CASE \#3: (C3)

CASE \#4: (C4)

Plan MN472	
	Proiect
	7119 80th Ave SE
122 South Jackson	
Suite 210	Mercer Island, WA 98040
Seattle, WA 98104 † 206.789.6038 f 206.789.6042	

$7 / 10 / 2023$	
Date	
0444-2023-23-01	
Proi. No.	JMT
Design	DC8
Sheet	

Seismic: \quad * Includes 2000lbs for PV Panels

Level	Area $\left(\mathrm{ft}^{2}\right)$	Unit Wt (psf)	Weight (kips)	Avg Ht (ft)	Wi•Hi $(\mathrm{k}-\mathrm{ft})$	Distrib. $(\%)$	Shear, V (kips)	Uniform (plf)
Roof	2800	22.5	$65.00{ }^{*}$	31	2015.00	66%	$\mathbf{1 3 . 8 4}$	$215 / 311$
Upper Floor	3500	25	87.50	12	1050.00	34%	$\mathbf{7 . 2 1}$	$112 / 146$

Totals: $\quad \xlongequal{152.50 \mathrm{k}} \quad \underline{\underline{21.05 \mathrm{k}}}$
Base Shear:

$$
\begin{aligned}
\mathrm{V} & =\mathrm{C}_{S} \times \mathrm{W} \\
& =0.197 \times 152.5 \mathrm{k}=30.05 \mathrm{kips} \text { (Ultimate) } \\
& =0.138 \times 152.5 \mathrm{k}=21.05 \mathrm{kips} \text { (Allowable) }
\end{aligned}
$$

Wind:

North-South Exposure

Level	Trib (ft)	Wind Load $(\# / \mathrm{ft})$	Length (ft)	Shear, V (kips)
Roof	16	$1^{\prime} \times 9.9+1^{\prime} \times 13.4+4^{\prime} \times 12.9=174 \mathrm{plf}$	64.5	$\mathbf{1 1 . 2 2}$
Upper Floor	10	$1^{\prime} \times 12.9+9^{\prime} \times 12.3=124$ plf	64.5	$\mathbf{8 . 0 0}$

19.22 k

East-West Exposure

Level	Trib (ft)	Wind Load $(\# / \mathrm{ft})$	Length (ft)	Shear, V (kips)
Roof	16	$1^{\prime} \times 9.9+1^{\prime} \times 13.4+4^{\prime} \times 12.9=174$ plf	44.5	$\mathbf{7 . 7 4}$
Upper Floor	10	$1^{\prime} \times 12.9+9^{\prime} \times 12.3=124$ plf	49.5	$\mathbf{6 . 1 4}$

13.88 k

MALSAM
Project

Date	
0444-2023-23-01	
Proj. No.	
Design	
	JMT
Sheet	

$\frac{\text { Plan MN472 }}{\text { Project }}$

122 South Jackson
7119 80th Ave SE

Suite 210
Seattle, WA 98104

+ 206.789.6038
Mercer Island, WA 98040

Date	
0444-2023-23-01	
Prof. No.	
Design	JAT
Sheet	

Project

$7 / 10 / 2023$	
Date	
0444-2023-23-01	
Proi. No.	
Design	JMT
Sheet	

Laterac pane diagram
anc table 4.3.4 Anc 4.3.3.4.1
ROOF:
3.5:1

Level 2:
Ane tabus 9.3.4 AwC 4.3.3.4.1 3.5:1 $2 \mathrm{bs} / \mathrm{h}$

122 SOUTH JACKSON ST
T 206.789.6038 ENGINEERING MALSAM-TSANG.COM

TYPICAL ROOF FRAMING
PRE-MFR TRUSSES AT 2400

GT AT SE CORNER
$L=25^{\prime}$

$$
\omega=.045(4 / 2)=.90
$$

$R=11.25$
$M=70.31$

$$
\left.\Delta=.74^{3}=4 / 403\right]
$$

$$
G T \text { or }\left[G L 5 F_{3 x} 24\right]
$$

BALSAM TSANG STRUCTURAL
ENGINEERING ENGINEERING

Plan MN472

Suite 210
Seattle, WA 98104

+ 206.789.6038
f 206.789.6042
\qquad
Mercer Island, WA 98040
\qquad

7/10/2023

VERTICAL ANALYSIS
CASE 1, 4NO
LEIEL 2 FRAMING
THPICAL FLOOR FRAMing
RFPI Jolsts AT K"oc
CANT BM AT OPENING (C3) \#201

$$
\begin{aligned}
& L=17^{\prime} \\
& a=4^{\prime} \\
& W_{1}=.055(16 / 12)=.073 \\
& W_{2}=.055(8 / 2)= \\
& P=1.48 \\
& R_{1}=.17 \\
& R_{2}=3.43 \\
& M=-7.68
\end{aligned}
$$

$$
\begin{aligned}
& f_{b}=-.77 \\
& f_{5}=53 \\
& \Delta_{C}=.12^{n}=24 / 835 \\
& \tau_{B 5}=4.75^{\circ}
\end{aligned}
$$

GL5'/8y $11^{4 / 8}$ or LVL. $514 \times 11 / 8$
N|S BEAM AT OPENING (C2) ReCHEUK HOO2

$$
\begin{aligned}
& L_{1}=17.25 \\
& L_{2}=1.5 \\
& W_{1}=.055(1411) / 2+.135=.172 \\
& W_{2}=.055(16 / 12)=.073 \\
& P=1.48 \\
& R_{1}=1.72 \\
& R_{2}=2.83 \\
& M=8.64
\end{aligned}
$$

$$
f_{1}=.86
$$

$$
f_{v}=70
$$

$$
A=, 43^{2}=4523
$$

GLS $/ 8 \times 11 / 30 \cdot R$ LUL $5 / 4 \times 11^{7 / 3}$ $\Omega_{0} C H$ 此K

$$
P_{\text {II }}=(2.5)(2.30)=5.75^{\circ \mathrm{K}}
$$

$$
R_{1}=2,18
$$

$$
R_{2}=8.12
$$

$$
M=13.84
$$

$$
\begin{aligned}
& f_{b}=1.38 \\
& f_{v}=201
\end{aligned}
$$

$G L S^{1 / 8 \times 17} / 8$ or WVLS $/ 4 \times 11^{7 / 8}$

E/W BEAM AT NEATH (C2) תOCHECK $\# 203$

$$
\begin{aligned}
& L_{1}=4^{\prime} \\
& L_{2}=3.5^{1} \\
& W_{1}=.055(18.5)+.04(8.5 / 2)+.135+.045(41 / 2)=1.736 \\
& W_{2}=.055(18.5 / 2)+.04(8.5 / 2)+.135=.814 \\
& P=2.54 \\
& R_{1}=6.94 \\
& f_{b}=1.38 \\
& R_{2}=5.39 \\
& f_{v}=133 \\
& M=13.88 \\
& \Delta=.10^{3}=4874
\end{aligned}
$$

$$
\begin{aligned}
& \text { ת CHECK } \\
& P_{E}=(2.5)(2.33)=5.83^{\mathrm{K}} \\
& R_{1}=9.66 \\
& R_{2}=8.50 \\
& f_{b}=2.47 \\
& M=24.76 \\
& f_{v}=210
\end{aligned}
$$

GL5/8x/17/8 or LVL 5/4x 117/8
m/sbeam at gatrané opining Rolheck $\mathrm{H}_{20} \mathrm{O}$

$$
\begin{aligned}
& W_{1}=.055(141 / n)+.135=.208 \\
& \omega_{2}=.055(4 / 12)=.073 \\
& R_{1}=2.58 \\
& R_{2}=1.51 \\
& f_{b}=.90 \\
& f_{v}=59 \\
& M=9.06 \\
& \Delta=.33^{4}=4 / 596
\end{aligned}
$$

$$
\begin{aligned}
& \Omega_{0} C H 2 L_{K} \\
& P_{\Delta}=(2,5)(1.72)=4.30 \mathrm{~K} \\
& R_{1}=3.63 \\
& R_{2}=4.76 \\
& M=18.50 \\
& f_{6}=1.84 \\
& f_{v}=118
\end{aligned}
$$

Plan MN472

$$
\begin{aligned}
& \text { f } 206.789 .6038 \\
& \text { f } 206.789 .6042
\end{aligned}
$$

$7 / 10 / 2023$	
Date	
0444-2023-23-01	
Proi. No.	
Design	
Sheet	

VERTICAL ANALYSIS CASE 1, 4NO
LEVEL $2 \operatorname{CONT}$
E)W BEAM SUPFRET104 \#205 (C2). \#205

$$
\begin{aligned}
& L_{1}=6^{\prime} \\
& L_{2}=1.5^{1} \\
& \omega_{1}=.055(6 / 2)=.165 \\
& \omega_{2}=.055(18 / 2)=.495 \\
& P=2.58 \\
& R_{1}=1.18 \\
& R_{2}=3.13 \\
& M=4.14
\end{aligned}
$$

$$
f_{b}=.68
$$

$$
f_{v}=127
$$

$$
\Delta=. \theta 5^{-u}
$$

GL $3 / 8 x+1 / 18$ or $W / L 3 / 2 x 11 / 8$
SO CHELK

$$
P_{E}=(2,5)(1.72)=4.30^{K}
$$

$$
R_{1}=2.04
$$

$$
R_{2}=6.57
$$

$$
f_{b}=1,52
$$

$$
M=9.30
$$

$$
f_{v}=266
$$

$G \angle 348 \times 11 / 8$ orLLKL $3 / 2 \times 11 \% / 8$

$$
\begin{aligned}
& W_{1}=.055(11.5 / 2)+.135+.04(6 / 2)=.571 \\
& W_{2}=.055(16 / 2)+.135+.04(6 / 2)=.695
\end{aligned}
$$

$$
R_{1}=16.54
$$

$$
R_{2}=4.11
$$

$$
M=85.67
$$

$$
\begin{aligned}
& f_{b}=1.65 \\
& f_{v}=174 \\
& A=.32^{\prime}=4708
\end{aligned}
$$

wRest Cast $\quad P_{L}=(2,5)(2,7)=6,78$

$$
R_{1}=18.98
$$

$$
R_{2}=13.55
$$

$$
M=99.71
$$

E/W BM AT GARAGIS
\#207

$$
\begin{array}{ll}
L=11.75 & f_{b}=1.41 \\
W=.055(1712)+.135+.04=.643 \\
R=3.78 & f r=77 \\
M=11.10 & A=124=4658
\end{array}
$$

GLSHBAT/8ORLMLSHx ${ }^{17 / 8}$
N/S BEAM AT GARAGE (C4) $\frac{\text { SOCHECK }}{\# 20 B}$

$$
\begin{aligned}
& L_{1}=15.75 \\
& L_{2}=1.5^{\prime} \\
& L_{3}=4.75 \\
& W_{1}=.055(16 / 12)=.073 \\
& W_{2}=.055(16 / 12)+.135=.208 \\
& W_{3}=.04(11.75 / 2)=.235 \\
& P_{1}=11.11 \\
& P_{2}=3.78 \\
& R_{1}=4.91 \\
& R_{2}=12.56 \\
& M=68.26
\end{aligned}
$$

$$
f_{b}=1.32
$$

$$
f v=137
$$

$$
\Delta=, 31^{\prime \prime}
$$

$$
\begin{array}{cc}
G L 518 \times 27 & =L / 852 \\
\Omega_{0} C H E L K & \\
P_{E}=13.55 \mathrm{~K} & \\
R_{1}=5.60 & f_{b}=1.53 \\
R_{2}=14.31 & f_{r}=156 \\
M=79.18 & \\
G L 518 \times 27 &
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
f_{b}=1.92 \\
f_{v}=200
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
f_{b}=1.92 \\
f_{v}=200
\end{array} \\
& G L 5 Y_{8 \times 27} \\
& \text { G-5y8×27 } \\
& \Omega_{0} \mathrm{CHELK} \\
& \begin{array}{c}
P_{T}=(2,5)(2,71)=6,78 \\
\Omega_{0} \text { AUT AS COMPLES } \\
f=1.92
\end{array} \\
& \begin{array}{l}
f_{1}=1,92 \\
f_{r}=200 \\
G L 5 \% 8 \times 27
\end{array}
\end{aligned}
$$

Plan MN472
Project

LEVEL 2 cont

$L=16$
$\omega=.045(75 / 2)=.169$
$R=1.35$
$M=5.41$

$$
\begin{aligned}
& f_{b}=.94 \\
& f_{v}=40 \\
& \Delta=.44^{\circ} \\
& =4431
\end{aligned}
$$

typical crawl header

$$
\begin{array}{ll}
L=7 & f_{b}=.73 \\
w=.055(18 / 2)=.495 & f_{v}=63 \\
R=1.73 & \Delta=.07^{11} \\
m=3.03 & =4 / 1160
\end{array}
$$

$$
4 \times 10
$$

RIDGE BEAM AT WEST PKTIOAZ213
DROP BERM KT FRONT PATIO

$$
\begin{array}{ll}
L=18.75 \\
W=.04(18 / 2)=0.36 & \\
R=3.4 & t_{b}=1.23 \\
M=15.8 & f_{V}=71 \\
& \begin{array}{ll}
& =0.55^{\prime \prime}=4408 \\
& C L 5-1 / 2 \times 13-1 / 2
\end{array}
\end{array}
$$

DROP BEAM AT KP (C2) \#24

$$
\begin{aligned}
& L_{1}=4.75 \\
& L_{2}=4.75 \\
& W_{1}=.04 \\
& W_{2}=.04 \\
& P=1.68 \\
& R_{1}=1.03 \\
& B_{2}=1.03 \\
& M=4.44
\end{aligned}
$$

$$
\begin{aligned}
f_{b} & =1.07<1.24 \\
f_{v} & =46 \\
\Delta & =.16 \\
& =41711
\end{aligned}
$$

4×10
DROP BM AT WEST PATH FRI

Plan MN472
f 206.789 .6042

$$
\begin{aligned}
& L=16.5^{\prime} \\
& \omega=.04(9 / 2+2)=16 \\
& R=2.2 \\
& M=8.9^{\circ} \\
& \text { GL 5-1/2 } \times 10-1 / 2 \\
& f_{b}=1.1 \\
& f_{v}=56 \\
& \Delta=10,15^{\circ 1} \\
& =L / 436
\end{aligned}
$$

VERTICAL BEARINC COMDITIUN:

$$
\begin{aligned}
& H=20^{\circ} \\
& P=9.4^{\mathrm{K}} \\
& P_{\text {ALCO }}=13.9^{\mathrm{K}} \\
& \Delta=0.4^{\mathrm{K}} \\
& L=575
\end{aligned}
$$

USE LVL $5^{1 / 4} \times 5^{1 / 4}$ (PSC $5 m_{1} \times 5^{1 / 1}$ SMM)

Level, Wall: Column

1 piece(s) 5 1/4" x 5 1/4" 1.8E Parallam® PSL

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	38	50	Passed (76\%)	--	--
Compression (lbs)	9400	13906	Passed (68\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$
Plate Bearing (lbs)	9400	17227	Passed (55\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$
Lateral Reaction (lbs)	129	--	--	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Shear (lbs)	123	6762	Passed (2\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Moment (ft-lbs)	631 @ mid-span	8812	Passed (7\%)	1.60	$1.0 \mathrm{D} \mathrm{+} \mathrm{0.6} \mathrm{~W}$
Total Deflection (in)	0.40 @ mid-span	0.98	Passed (L/595)	--	$1.0 \mathrm{D}+0.45 \mathrm{~W}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}$
Bending/Compression	0.88	1	Passed (88\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$

- Lateral deflection criteria: Wind (L/240)
- Input axial load eccentricity for this design is 16.67% of applicable member side dimension.
- Applicable calculations are based on NDS.
- This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

Supports	Type	Material
Top	Dbl 2 X	Douglas Fir-Larch
Base	2 X	Douglas Fir-Larch

System : Wall
Member Type : Column
Building Code : IBC 2018
Design Methodology : ASD

Lateral Connections						
Supports	Connector	Type/ Model	Quantity	Connector Nailing		
Top	Nails	$8 \mathrm{~d}\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$	2	N/A		
Base	Nails	$8 \mathrm{~d}\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$	2	N/A		

- Nailed connection at the top of the member is assumed to be nailed through the bottom $2 x$ plate prior to placement of the top $2 x$ of the double top plate assembly.

Vertical Load	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Comments
1 - Point (Ib)	N/A	-	9400	Default Load

Lateral Load	Location	Tributary Width	Wind (1.60)	Comments
1 - Uniform (PSF)	Full Length	$1 '$	21.9	

- ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (13'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area
determined using full member span and trib. width.
- IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

| Job Notes |
| :--- | :--- |

Garrett Oswald
Malsam Tsang
(206) 902-7287
garretto@malsam-tsang.com

