REVISED STRUCTURAL CALCULATIONS FOR:

PLAN MN472

7119 80TH AVE SE MERCER ISLAND, WA 98040

ARCHITECT: MN CUSTOM HOMES

DECEMBER 1, 2023

DESIGN CRITERIA IBC 2018

DEAD LOADS

	-		
ROOF		FLOO	R
Composition	2.5 psf	3/4" Plywood	2.4 psf
3/4" Plywood	2.4 psf	TJI @ 16" o.c.	2.3 psf
Truss @ 24" o.c.	3 psf	Flooring	1.0 psf
Insulation	1.0 psf	Gyp Board (5/8")	2.8 psf
Gyp Board (5/8")	2.8 psf	MEP	1.5 psf
MEP	1.5 psf		
Solar Panels	5.0 psf		
Total	18.2 psf		10.0 psf
Use	20.0 psf	Use	15.0 psf

LIVE LOADS/OCCUPANCY

Risk Category	II	ROO	F LIVE	FLOOR LIVE		DECK LIVE	
Roof Deck	No	Snow =	25 psf	Occupancy =	40 psf	Occupancy =	60 psf
Common Access	No			Stair/Corridor =	40 psf		

SEISMIC CRITERIA ASCE 7-16 Ch. 11 & Ch. 12

Imp. Factor =	1.00	Seismic Ht, hn=	32	ft
Site Class =	D(Default)	T, Building=	0.3	
R Value =	6.5	Ts=	0.5	

Geo. Ground Hazard?

S _s =	1.6	F _a =	1.200	Table 11.4-1
S ₁ =	0.5	F _v =	NULL	Table 11.4-2
S _{ms} =	1.920	$x 2/3 = S_{ds} =$	1.280	Eqn. 11.4-3
$S_{m1} =$	NULL	$x 2/3 = S_{d1} =$	NULL	Egn. 11.4-4

No w/ASCE 11.4.8 Excep's

C _{SULT} =	0.197
C _{SALL} =	0.138

 $T/Ts = 0.567 \le 1.5$ Okay, Cs Eqn. 12.8-2

SEISMIC WEIGHT ASCE 7-16 12.7.2

Partitions = 15 psf

*Roof weight = 1/2 Partition + Roof DL

*Floor weight = Full Partition + Floor DL

ROOF 26.0 psf 0 22.5 psf FLOOR 25.0 psf

SEISMIC DESIGN CATEGORY IBC 1613.2.5

Seismic DC= D

WIND CRITERIA ASCE 7-16 Ch. 27 Directional Procedure

V =	97 mph	$K_d = 0.85$
Exposure =	В	G = 0.85
h =	32 ft	$K_{zt} = 1.44$ *See Kzt

Roof Slope = 6:12 = 27°

PRESSURE COEFFICIENTS (Cp)

Windward Wall =	0.8	Windward Roof =	0.3
Leeward Wall =	-0.5	Leeward Roof =	-0.6

PRESSURE (PSF) $q = 0.00256K_zK_{zt}K_dV^2$									
Ht	K _z	qz	0.6xq _z ¹	q_h	P_{WW}	P_{LW}	P_{WALL}	P _{ROOF}	
0-15	0.57	16.8	10.1		6.9	5.5	12.3		
15-20	0.62	18.3	11.0		7.5	5.5	12.9		
20-25	0.66	19.5	11.7		7.9	5.5	13.4		
25-30	0.70	20.6	12.4		8.4	5.5	13.9		
30-35	0.73	21.5	12.9	12.9	8.8	5.5	14.3	9.9	
35-40	0.76	22.4	13.4		9.1	5.5	14.6		
40-45	0.79	23.3	14.0		9.5	5.5	15.0		
45-50	0.81	23.9	14.3		9.7	5.5	15.2		

Per IBC 2018 1605.3.1 Basic Load Combinations

122 South Jackson Suite 210 Seattle, WA 98104 t 206.789.6038 f 206.789.6042 Plan MN472
Proiect
7119 80th Ave SE

Mercer Island, WA 98040

7/10/2023

Date

0444-2023-23-01

Proi. No.

JMT

Design

DC1

Worksheet

Seward Park

▲ This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address: 7119 80th Ave SE, Mercer Island, WA 98040, USA

Coordinates: 47.5387084, -122.2327365

Elevation: 297 ft

Timestamp: 2023-07-10T18:43:33.856Z

Hazard Type: Seismic

Reference Document: ASCE7-16

Risk Category: II
Site Class: C

297 ft Pioneer Park SE 72nd St WALLEY MAY CREEK Map data © 2023 Google Report a map error

MCER Horizontal Response Spectrum

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	1.469	MCE _R ground motion (period=0.2s)
S ₁	0.508	MCE _R ground motion (period=1.0s)
S _{MS}	1.763	Site-modified spectral acceleration value
S _{M1}	0.758	Site-modified spectral acceleration value
S _{DS}	1.175	Numeric seismic design value at 0.2s SA
S _{D1}	0.505	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	D	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
F_{v}	1.492	Site amplification factor at 1.0s
CR _S	0.902	Coefficient of risk (0.2s)
CR ₁	0.898	Coefficient of risk (1.0s)
PGA	0.629	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA_{M}	0.754	Site modified peak ground acceleration
T_L	6	Long-period transition period (s)
SsRT	1.469	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.629	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	4.282	Factored deterministic acceleration value (0.2s)
S1RT	0.508	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.566	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)

ATC Hazards by Location

S1D	1.638	Factored deterministic acceleration value (1.0s)
PGAd	1.42	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Kzt WORKSHEET

ASCE 7-10 26.8.1

Exposure = C
Bldg Height = 31.5 ft
Site Elev = 307 ft

Topographic Factor, Kzt

ESCARPMENT

2-D RIDGE OR 3-D AXISYMMETRICAL HILL

PROFILE 1		PROF			FILE 3	PROF			
Shape =	3-D Hill	Shape =	3-D Hill	Shape =	3-D Hill	Shape =	3-D Hill		
H =	319 ft	H =	298 ft	H =	289 ft	H =	308 ft		
H/2 =	160 ft	H/2 =	149 ft	H/2 =	145 ft	H/2 =	154 ft		
L _h =	2640 ft	L _h =	1320 ft	L _h =	2323 ft	L _h =	686 ft		
x =	1320 ft	x =	158 ft	x =	0 ft	x =	2429 ft		
z =	32 ft	z =	32 ft	z =	32 ft	z =	32 ft		
Unobstructed ¹	Yes	Unobstructed	l ¹ Yes	Unobstructe	ed ¹ Yes	Unobstructed	¹ Yes		
Above Terrain ²	Yes	Above Terrain	ı² Yes	Above Terra	in ² Yes	Above Terrain	² Yes		
Upper Half ³	Yes	Upper Hal	f³ Yes	Upper Ha	alf³ Yes	Upper Half	³ Yes		
Site to Crest	Upwind	Site to Cres	st Upwind	Site to Cro	est Upwind	Site to Cres	t Downwind		
H/Lh⁴	0.121	H/Lh	o.225758	H/L	. h⁴ 0.124397	H/Lh	4 0.4487179		
Calc Kzt ?	NO	Calc Kzt	? YES	Calc Kz	t? NO	Calc Kzt i	? YES		
K ₁ : (K ₁ .	/H/L _h)	K ₁ : (K	₁ /H/L _h)	K ₁ : (K_1 : $(K_1/H/L_h)$ K_1 : $(K_1/H/L_h)$		₁ /H/L _h)		
Coefficient =	1.05	Coefficient =	1.05	Coefficient =	1.05	Coefficient =	1.05		
K ₁ = N/A		$K_1 = 0.2370$	5	$K_1 = N/A$		$K_1 = 0.47115$	5		
K ₂ : (1 -	x /μL _h)	K ₂ : (1 -	· x /μL _h)	K ₂ : (1	- x /μL _h)	K ₂ : (1 -	$ x /\mu L_h$		
$\mu = 1.5$ (Fig.	gure 26.8-1)	$\mu = 1.5$ (F	igure 26.8-1)	$\mu = 1.5$ (Figure 26.8-1)	$\mu = 1.5$ (Fig.	igure 26.8-1)		
$K_2 = N/A$		$K_2 = 0.9$	2	$K_2 = N/A$		$K_2 = -1.35897$			
K ₃ : e	-γz/Lh	K ₃ :	e ^{-γz/Lh}	K ₃ :	e ^{-γz/Lh}	K ₃ : 6	e ^{-γz/Lh}		
$\gamma = 4$ (Figure 26.8-1)		$\gamma = 4$ (F	igure 26.8-1)	$\gamma = 4$ (Figure 26.8-1)		$\gamma = 4$ (Figure 26.8-1)			
		$K_3 = 0.9089$	6	$K_3 = N/A$		$K_3 = 0.8323$			
$K_{zt} = (1 + K_1 K_2 K_3)^2$ $K_{zt} = (1 + K_1 K_2 K_3)^2$		$(2 K_3)^2$	$K_{zt} = (1 + K_1)$	$K_2 K_3$ ²	$K_{zt} = (1 + K_1 K_1)$	$(2 K_3)^2$			
$K_{zt} = 1.00$		$K_{zt} = 1.44$		$K_{zt} = 1.00$		$K_{zt} = 1.00$			
1 Hill ridge	1 Hill ridge or escarpment is isolated and unobstructed unwind by other similar topographic features of comparable								

- 1 Hill, ridge, or escarpment is isolated and unobstructed upwind by other similar topographic features of comparable height for 100H or 2 miles (whichever is less) ASCE 7-10 26.8.1
- ² The hill, ridge, or escarpment protrudes above the height of the upwind terrain features within a 2-mi radlus in any quadrant by a factor of two or more. ASCE 7-10 26.8.1
- ³ The structure is located as shown in Fig. 26.8-1 in the upper one-half of a hill or ridge or near the crest of an escarpment. ASCE 7-10 26.8.1
- 4 For H/L $_h$ > 0.5, assume H/L $_h$ = 0.5 for K $_1$ and L $_h$ = 2H for K $_2$ and K $_3$

Kzt = 1.44

122 South Jackson Suite 210 Seattle, WA 98104 † 206.789.6038 f 206.789.6042

	Plan MN472
Project	
	7119 80th Ave SE
	Mercer Island, WA 98040

7/10/2023
Date
0444-2023-23-01
Proj. No.
JMT
Design
DC3
Sheet

TYPICAL BEAM CASES

CASE #1: (C1)

*ASSUME CASE 1 FOR ALL BEAMS U.N.O.

CASE #2: (C2)

CASE #6: (C6)

CASE #3: (C3)

CASE #7: (C7)

CASE #4: (C4)

Plan MN472

Proiect
7119 80th Ave SE

Mercer Island, WA 98040

7/10/2023

Date
0444-2023-23-01

Proi. No.

JMT

Design

DC8

Sheet

122 South Jackson Suite 210 Seattle, WA 98104 t 206.789.6038 f 206.789.6042

LATERAL ANALYSIS

Seismic:

* Includes 2000lbs for PV Panels

Lovel	Area	Unit Wt	Weight	Avg Ht	Wi∙Hi	Distrib.	Shear, V	Uniform
Level	(ft ²)	(psf)	(kips)	(ft)	(k-ft)	(%)	(kips)	(plf)
Roof	2800	22.5	65.00 *	31	2015.00	66%	13.84	215 / 311
Upper Floor	3500	25	87.50	12	1050.00	34%	7.21	112 / 146

Totals: 152.50 k 3065.00 21.05 k

Base Shear:

 $V = C_S \times W$

= 0.197 x 152.5k = 30.05 kips (Ultimate)

= 0.138 x 152.5k = 21.05 kips (Allowable)

Wind:

North-South Exposure

Level	Trib	Wind Load	Length	Shear, V
Levei	(ft)	(#/ft)	(ft)	(kips)
Roof	16	11' x 9.9 + 1' x 13.4 + 4' x 12.9 = 174 plf	64.5	11.22
Upper Floor	10	1' x 12.9 + 9' x 12.3 = 124 plf	64.5	8.00

19.22 k

East-West Exposure

122 South Jackson

Seattle, WA 98104 t 206.789.6038

f 206.789.6042

Suite 210

Lovel	Trib	Wind Load	Length	Shear, V
Level	(ft)	(#/ft)	(ft)	(kips)
Roof	16	11' x 9.9 + 1' x 13.4 + 4' x 12.9 = 174 plf	44.5	7.74
Upper Floor	10	1' x 12.9 + 9' x 12.3 = 124 plf	49.5	6.14

13.88 k

Plan MN472
Project
7119 80th Ave SE

Mercer Island, WA 98040

7/10/2023

Date

0444-2023-23-01

Proj. No.

JMT

Design

L-1

Sheet

LATERAL ANALYSIS - NORTH/SOUTH EXPOSURE

(SEISMIC LOADS)

122 South Jackson Suite 210 Seattle, WA 98104 t 206.789.6038 f 206.789.6042

Plan MN472	
Project	
7119 80th Ave SE	
Mercer Island WA 08040	

7/10/2023 0444-2023-23-01 Proj. No. JMT Design

L2

122 South Jackson Suite 210 Seattle, WA 98104 t 206.789.6038 f 206.789.6042 Plan MN472

Project

7119 80th Ave SE

Mercer Island, WA 98040

7/10/2023

te

0444-2023-23-01 Proj. No.

JMT

0,1.101

Design L3

LATERAL	PANEL DING	ZAM			
200F:				AWC TABLE 4.3.4 3.5:1	AWC 4.3.3.4.1 265/h
	GLEVATION	MIN. LENGTH OF SHEARWALL	PLATE HOWIT	Aspect	RATIOS
	NORTU	3.5′	9'	9/35= 2.57'	2bs/n=[(2)(35)/2](450) = 350
	SOUTH	3.5'	9'	9/35 = 2.57'	= 3 5 0
	EAST	3,75	9'	9/3.5 = 2.57	205/L = [(2)(3-75/4](230) = 192
	WEST	5.5'	91	9/25= 2.57	>1-0

LEVEL 2:

ANC TABLE 93.4 ANC 4.3.3.4.1
3.5:1
2 h./4

			3.0 - 1	45s/h	
ELEVATION	MIN LENGTH OF SHEARMALL	PLATE HEIGHT	ASPEC	T RATIOS	
NOZIH	3.5'	10'	10/3.5 = 2.86	0' [(2)(3.5)/10](900)	= 630
SOUTH	3.5'	10'	10/3.5 = 2.86		
EAST	4.75	10'	10/35= 2.86	(2)(4.75')(0)(230) =	219
WEST	5.25'	10'	10/3.5 = 2.86	,' >1.0	

PLAN MN472

12.1.23 DATE

PROJECT

0444-2023-23 PROJECT NO

GAO DESIGN

L4 SHEET

CASE 1, UNO

Typical Units: L = ft, W = klf, P = kip, R = kip, M = k-ft, V = k, Fb = ksi, Fv = psiUnits in (Parenthesis) represent Dead Load or 0.6DL (Ωo=2.5)

ROOF FRAMING

TYPICAL ROOF FRAMING PRE-MFR TRUSSES AT 24 oc

GTAT SE CORNER L=25' W=.045(49/2)=.90 F=11.25 M=70.31 GT on GL=1.72 GL=1.74 GL=1.74 GL=1.74

MALSAM **TSANG** STRUCTURAL

122 South Jackson Suite 210 Seattle, WA 98104 t 206.789.6038 f 206.789.6042

Plan MN472

Project

7119 80th Ave SE

Mercer Island, WA 98040

7/10/2023

Date 0444-2023-23-01

Proj. No.

JMT

Design

V1

CASE 1, UNO

LEVEL 2 FRAMING

TYPICAL FLOOR FRAMING

REPI JOISTS AT 16'OL

CANT BM AT OPENING (C3)

L=17

a=4

12 = .055(14/2) = .073

W, = 055(8/2)=

P = 1.48

RIE . 17

R2=3.43

M = -1.68

for - 11

fr= 53

An= 1/2"=24/835

12C=4/15 GL5/8×1148 OR LVL5/4×1148

NIS BEAM AT OPENING (C2) 22 CHECK #202

Li- 17,251

12= 1,5'

W1= ,055(14/12)/2+,135=,172

W2=,055(16/12)=,073

P= 1.48

RI= 1,72

F2= 2.83

M= 8.64

fr= .86 fv= 70

GL 5/04/17/8. R LUL5/4x/17/8

So CHECK

Pe=(25)(2,30)=5,45K

R1 = 2,18

R1= 8,12

M=13,94

fr= 1,38

fir= 201

GLS/8x117/8 or LVL5/4x114/8

Typical Units: L = ft, W = klf, P = kip, R = kip, M = k-ft, V = k, Fb = ksi, Fv = psi Units in (Parenthesis) represent Dead Load or 0.6DL (Ωo=2.5)

E/W BEAM AT NENTH (C2) SCHELL + 203

L= 41

L1= 3,5

W.= ,055/185/+,04(85/2)+,135+,045(41/2)=1,736

Wo = 1.055 (18.52)+.04 (8.52)+.135=.814

P=2,54

R,= 6.94

Fr = 1.38

R1 = 5.39

Fu = 133

M= 13,88

A= 10= 1/874

GL 5/8x/18 on LVL 5/4x 119/8 12 CHECK

PE = (2.5)(2.33) = 5,83K

BI= 9.66

R2= 8.50

M = 24.76

FL= 2.47

Ru= 210

GL5/8x 117/8 OR LVL 5/4x 117/8

NIS BEAM AT GARAGE OPENING ROLHELK + 204

W. J. W. J. W. J. W. Z. W. Z.

W12 .055 (14/12) + . 135 = ,208

WZ= .055(14/12)=.073

R,= 2,58

fs= .90

Rn= 1,51 M = 9,06

GL 5/8x11 \$18 or LVL 5/4x11 \$18 No CHEZK

Pr=(2,5)(1.42) = 4.30K

R. = 3,63

Rr= 4.76 M=18,50 fr = 1.84 fu=118

GL 5/8x1148 OR LVL 5/4x114/8

MALSAM TSANG

122 South Jackson Suite 210 Seattle, WA 98104 t 206.789.6038

f 206.789.6042

Plan MN472

7119 80th Ave SE

Mercer Island, WA 98040

7/10/2023

0444-2023-23-01

Proj. No.

JMT

Design V2

Sheet

Date

CASE 1,4NO

LEVEL 2 CONT

EW BEAM SUPPETION #205 (c2). #205

L= 6

La= 1.5

W,= .055(6/2)= .165

Wz= ,055(18/2)= .495

P = 2.58

R=1.18

fr= 168 fr = 127

R2=3.13 M= 4.14

GL 3/8x/17/8 OR LVL 3/2x/11/8

SZO CHECK Pe=(2,5)(1,72)=4,30K

R. = 2.04

R2= 6,57

M= 9.30

GL3/8x117802LVL3/2x117/8

PW AT GARAGE DO CHECK #206

15.33 OK OK OK

WI TW2 TW2 TO TO

15.36 3 5.75 3.75 5.7

W,= .055(15/2)+,135+,04(1/2)= .571 W2= .055 (16/2) +,135 +.04 (6/2) = .695

R,= 16,54

fo= 1,65

Rrs Will

M = 85.67

A= ,32=4/109

GL 5/8x27

So CHECK

Pe=(2,5)(2.41) = 6,78

WORST CASE RI= 18.98

Rz= 13,55

fr = 1.92 fr - 200

M = 99.41

GL5/8x27

Typical Units: L = ft, W = klf, P = kip, R = kip, M = k-ft, V = k, Fb = ksi, Fv = psi Units in (Parenthesis) represent Dead Load or 0.6DL (Ω o=2.5)

EW BM AT GARAGE

L= 11,75

W= .055(17/2)+,135+,04=,643

R= 3.78 M = 11.10

A= ,21-4658

GL 5/8x11/8 OR LVL 5/4x117/8

N/S BEAM AT GARAGE (CH)

LI= 15,75

LZ= 1,5

L2 = 4.75

W= ,055(16/n)=.973

W2= .055 (16/12)+.135=.208

W3 = .04 (11.45/2) = .235

P = 11.11

Pa = 3.78

R.= 4-91

R= 12,56

£= 1,32 Fr= 137

M = 68.26

A= ,31" =L/852

94518x27 Sho CHELK

Per = 13,55 K INCLUDES 20=2.5

R, = 5,60

R1= 14,31

M = 79.18

fb = 1.53 fr = 156

GL5/18x 27

MAI SAM **TSANG**

122 South Jackson Suite 210 Seattle, WA 98104 t 206.789.6038 f 206.789.6042

Plan MN472 Project

7119 80th Ave SE

Mercer Island, WA 98040

7/10/2023

JMT

0444-2023-23-01

Proj. No.

Date

Desiar V3

CASE 1, UNO

Typical Units: L = ft, W = klf, P = kip, R = kip, M = k-ft, V = k, Fb = ksi, Fv = psi Units in (Parenthesis) represent Dead Load or 0.6DL (Qo=2.5)

LEVEL 2 COUT

HEADER AT GARAGE

4209

L= 110

W= .045(15/2)=. (69

fs= .94 Pv= 40

R= 1.35 M = 5,41

A= ,44" =4431

6L5/8x9

TYPICAL CRAWL HEADER

レニヌ

fr= .73

W=. 055 (18/2)=,495 R= 1.73

fu= 63

M=3.03

W= .04(18/2)=0.36

1=18.75

R=3.4

A = 107" = 4/1160

RIDGE BEAM AT WEST 14TIO HZ13

DROP BEAM IT FRONT PATIO

#210

L= 185'

(1) = .04(5/42) = 0.18

fb= 121.

R = 1.49

fr = 63

M= 6.13

GL3-1/2 x 10-1/2

M=15.8

4b = 1.23 5v = 71 $\Delta = 0.55'' = 4408$

GL5-1/2 x 13-1/2

DEOP BEAM AT KP (c2) #211

L= 4.75

Lz= 4.75

W= .04

W, = .04

P= 1.68

R= 1.03 Br = 1,03

M= 4,44

fb= 1,07 < 1,24 fr= 46

A= 116

= 4/41

4x10

AUL DROP BM AT WEST PATED

1--- 16.51

W= .04(9/2+2)=26

fh= 1.1 fr = 56

R= 2.2

D = 10/15"

M= 8.9

- L/436

GL 5-1/2 x 10-1/2

MALSAM **TSANG**

STRUCTURAL

122 South Jackson Suite 210 Seattle, WA 98104 t 206.789.6038 f 206.789.6042

Plan MN472

7119 80th Ave SE

Mercer Island, WA 98040

7/10/2023

Date 0444-2023-23-01

V4

Proj. No.

JMT Design

FULL HEIGHT COLUMNS AT GREAT ROOM VERTICAL BEARING CONDITION: H= 20' P= 9.4x

> PALLOW = 13.9K A= 0.4" 4/515

USE LVL 54 x 54 (PSL 54 x 54 SIM)

PROJECT

PLAN MN472

12.1.23

DATE

0444-2023-23 PROJECT NO

GAU

SHEET V5

MEMBER REPORT Level, Wall: Column

1 piece(s) 5 1/4" x 5 1/4" 1.8E Parallam® PSL

Wall Height: 20' Member Height: 19' 7 1/2" Tributary Width: 1'

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	38	50	Passed (76%)		
Compression (lbs)	9400	13906	Passed (68%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	9400	17227	Passed (55%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	129			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	123	6762	Passed (2%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	631 @ mid-span	8812	Passed (7%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.40 @ mid-span	0.98	Passed (L/595)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr
Bending/Compression	0.88	1	Passed (88%)	1.00	1.0 D + 1.0 L

System : Wall Member Type : Column Building Code : IBC 2018 Design Methodology : ASD

- · Lateral deflection criteria: Wind (L/240)
- Input axial load eccentricity for this design is 16.67% of applicable member side dimension.
- Applicable calculations are based on NDS.
- This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

Supports	Туре	Material
Тор	Dbl 2X	Douglas Fir-Larch
Base	2X	Douglas Fir-Larch

Max Unbraced Length	Comments
1'	

Lateral Connections								
Supports	Connector	Type/Model	Quantity	Connector Nailing				
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				

[•] Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

Vertical Load	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
1 - Point (lb)	N/A	-	9400	Default Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1'	21.9	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (13'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

Weyerhaeuser Notes

ForteWEB Software Operator

garretto@malsam-tsang.com

Garrett Oswald

Malsam Tsang (206) 902-7287

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Job Notes

[•] IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.